1,436 research outputs found

    Propeller propulsion integration, phase 1

    Get PDF
    A bibliography was compiled of all readily available sources of propeller analytical and experimental studies conducted during the 1930 through 1960 period. A propeller test stand was developed for the measurement of thrust and torque characteristics of full scale general aviation propellers and installed in the LaRC 30 x 60 foot full scale wind tunnel. A tunnel entry was made during the January through February 1980 period. Several propellers were tested, but unforseen difficulties with the shaft thrust torque balance severely degraded the data quality

    Deceleration of Relativistic Radio Components and the morphologies of Gigahertz Peaked Spectrum Sources

    Get PDF
    A relativistic radio component, which moves in a direction close to the sky plane, will increase in flux density when it decelerates. This effect is the basis for the qualitative model for GPS galaxies we present in this paper, which can explain their low-variability convex spectrum, their compact double or compact symmetric morphology, and the lack of GPS quasars at similar redshifts. Components are expelled from the nucleus at relativistic speeds at a large angle to the line of sight, and are decelerated (eg. by ram-pressure or entrainment of the external gas) before contributing to a mini-lobe. The young components are Doppler boosted in the direction of motion but appear fainter for the observer. The non-relativistic mini-lobes dominate the structure and are responsible for the low variability in flux density and the convex radio spectrum as well as the compact double angular morphology. Had the same source been orientated at a small angle to the line of sight, the young components would be boosted in the observer's direction resulting in a flat and variable radio spectrum at high frequencies. Hence the characteristic convex spectrum of a GPS source would not be seen. These sources at small angles to the line of sight are probably identified with quasars, and are not recognized as GPS sources, but are embedded in the large population of flat spectrum variable quasars and BL Lac objects. This leads to a deficiency in GPS/CSOs identified with quasars.Comment: 11 pages, LaTeX, accepted by A&A 26/Jan/199

    PKS 1004+13: A High-Inclination, Highly-Absorbed Radio-Loud QSO -- The First Radio-Loud BAL QSO at Low Redshift?

    Full text link
    The existence of BAL outflows in only radio-quiet QSOs was thought to be an important clue to mass ejection and the radio-loud - radio-quiet dichotomy. Recently a few radio-loud BAL QSOs have been discovered at high redshift. We present evidence that PKS 1004+13 is a radio-loud BAL QSO. It would be the first known at low-redshift (z = 0.24), and one of the most radio luminous. For PKS 1004+13, there appear to be broad absorption troughs of O VI, N V, Si IV, and C IV, indicating high-ionization outflows up to about 10,000 km/s. There are also two strong, broad (~500 km/s), high-ionization, associated absorption systems that show partial covering of the continuum source. The strong UV absorption we have detected suggests that the extreme soft-X-ray weakness of PKS 1004+13 is primarily the result of absorption. The large radio-lobe dominance indicates BAL and associated gas at high inclinations to the central engine axis, perhaps in a line-of-sight that passes through an accretion disk wind.Comment: To appear in Ap.J. Letters, 1999 (June or July); 4 pages, 5 figure

    A new luminosity component in 3C 48

    Get PDF
    The infrared emission from the quasar 3C 48 has a luminosity L ≃ 5 x 10^(12) L_☉ and dominates the power output of the quasar system. It is shown that the infrared emission, unlike that of most radio-loud quasars, is most likely not an extension of the radio emission of the quasar. It is argued that the infrared emission in 3C 48 is probably thermal radiation arising in a highly luminous galaxy surrounding the quasar

    VLA radio continuum observations of a new sample of high redshift radio galaxies

    Get PDF
    We present new deep multi-frequency radio-polarimetric images of a sample of high redshift radio galaxies (HzRGs), having redshift between 1.7 and 4.1. The radio data at 4.7 and 8.2 GHz were taken with the Very Large Array in the A configuration and provide a highest angular resolution of 0.2''. Maps of total intensity, radio spectral index, radio polarization and internal magnetic field are presented for each source. The morphology of most objects is that of standard FRII double radio sources, but several contain multiple hot-spots in one or both lobes. Compared to similar samples of HzRGs previously imaged, there is a higher fraction (29%) of compact steep spectrum sources (i.e. sources with a projected linear size less than 20 kpc). Radio cores are identified in about half of the sample and tend to have relatively steep spectra (alpha < -1). Polarization is detected in all but 4 sources, with typical polarization at 8.2 GHz of around 10-20%. The Faraday rotation can be measured in most of the radio galaxies: the observed rotation measure (RM) of 8 radio sources exceeds 100 rad m^{-2} in at least one of the lobes, with large gradients between the two lobes. We find no dependence of Faraday rotation with other properties of the radio sources. If the origin of the Faraday rotation is local to the sources, as we believe, then the intrinsic RM is more than a 1000 rad m^{-2}. Because low redshift radio galaxies residing at the center of clusters usually show extreme RMs, we suggest that the high-z large RM sources also lie in very dense environments. Finally, we find that the fraction of powerful radio galaxies with extreme Faraday rotation increases with redshift, as would be expected if their average environment tends to become denser with decreasing cosmic epoch.Comment: Accepted for publication in A&A Supplemen

    A search for high redshift clusters associated with radio galaxies at 2 < z < 4

    Get PDF
    High redshift radio galaxies are amongst the most massive galaxies in the early Universe and have properties expected from central galaxies in forming clusters. We are carrying out an observational programme on the VLT to find and study galaxy proto clusters around radio galaxies at redshifts 2 < z < 4. First, we use narrow band imaging to select candidate galaxies which show excess Lyman alpha emission at redshifts similar to the central radio galaxy. Then, we use multi object spectroscopy to confirm the redshifts of these candidates and measure the velocity dispersion of the cluster members. Our goal is to observe a sample of about 10 targets and investigate galaxy overdensities as a function of redshift. Here, we report on the current progress of the programme and show some preliminary results which include the discovery of a structure of galaxies at redshift 4.1.Comment: 4 pages, 3 figures, Sesto conference proceeding 'Probing cosmic evolution with galaxy clusters
    corecore